
Research Laboratory
Java Web Crawler & Hadoop MapReduce

Anri Morchiladze && Bachana Dolidze
Supervisor Nodar Momtselidze

1. Java Web Crawler
● Description
● Java Code
2. MapReduce
● Overview
● Example of mapreduce program
● Code & Run
● Walk-Through

1:class Mapper

2: method Map(docid a, doc d)

3: for all term t ∈ doc d do

4: if term t ! ∈ HBase

5: Emit(term t, count 1)

1: class Reducer

2: method Reduce(term t, counts [c1, c2, . . .])

3: sum ← 0

4: for all count c ∈ counts [c1, c2, . . .] do

5: sum ← sum + c

6: Emit(term t, count sum)

7: To Hive

Crawler
A web crawler (also known as a web spider or web robot) is a program or
automated script which browses the World Wide Web in a methodical,
automated manner.

This process is called Web crawling or spidering.

Description
● Web crawlers are mainly used to create a copy of all the visited pages for

later processing by a search engine, that will index the downloaded pages
to provide fast searches.

● Crawlers can also be used for automating maintenance tasks on a Web
site, such as checking links or validating HTML code.

● Also, crawlers can be used to gather specific types of information from
Web pages, such as harvesting e-mail addresses (usually for spam).

Our Aim

1. Our aim is to
search specified
word in web pages.

2. We used ibrary
Jsoup for it and its
commands.
http://jsoup.org/

Java Code
1. Using Eclipse
2. Add a Jsoup library to

project
3. You can change web

site url or text word in
this program and see
results.

4. results are kept in a file

Mapreduce
Hadoop MapReduce is a software framework for easily writing
applications which process vast amounts of data (multi-terabyte
data-sets) in-parallel on large clusters (thousands of nodes) of
commodity hardware in a reliable, fault-tolerant manner.

A MapReduce job usually splits the input data-set into independent
chunks which are processed by the map tasks in a completely parallel
manner. The framework sorts the outputs of the maps, which are
then input to the reduce tasks. Typically both the input and the
output of the job are stored in a file-system. The framework takes
care of scheduling tasks, monitoring them and re-executes the failed
tasks.

Overview
The MapReduce framework consists of a single
master JobTracker and one slave TaskTracker per
cluster-node. The master is responsible for scheduling
the jobs' component tasks on the slaves, monitoring
them and re-executing the failed tasks. The slaves
execute the tasks as directed by the master.

The MapReduce framework operates exclusively on
<key, value> pairs, that is, the framework views the
input to the job as a set of <key, value> pairs and
produces a set of <key, value> pairs as the output
of the job, conceivably of different types.

Input and Output types of a MapReduce job:

(input) <k1, v1> -> map -> <k2, v2> -> combine
-> <k2, v2> -> reduce -> <k3, v3> (output)

Example
Before we jump into the details, lets walk through an example
MapReduce application to get a flavour for how they work.

WordCount is a simple application that counts the number of
occurences of each word in a given input set.

This works with a local-standalone, pseudo-distributed or fully-
distributed Hadoop installation (Single Node Setup)

http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html

Code & Run
Usage

Assuming HADOOP_HOME is the root of the installation and HADOOP_VERSION is the Hadoop version installed, compile
WordCount.java and create a jar:

$ mkdir wordcount_classes

$ javac -classpath ${HADOOP_HOME}/hadoop-${HADOOP_VERSION}-core.jar -d wordcount_classes
WordCount.java

$ jar -cvf /usr/joe/wordcount.jar -C wordcount_classes/ .

Assuming that:

● /usr/joe/wordcount/input - input directory in HDFS
● /usr/joe/wordcount/output - output directory in HDFS

Code & Run
Sample text-files as input:

$ bin/hadoop dfs -ls /usr/joe/wordcount/input/

/usr/joe/wordcount/input/file01

/usr/joe/wordcount/input/file02

$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file01

Hello World Bye World

$ bin/hadoop dfs -cat /usr/joe/wordcount/input/file02

Hello Hadoop Goodbye Hadoop

Run the application:

$ bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount /usr/joe/wordcount/input
/usr/joe/wordcount/output

Output
$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000

Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2

Walk-Through
The WordCount application is quite straight-forward.The Mapper implementation (lines 14-26), via the map method (lines
18-25), processes one line at a time, as provided by the specified TextInputFormat (line 49). It then splits the line into
tokens separated by whitespaces, via the StringTokenizer , and emits a key-value pair of < <word>, 1> .

For the given sample input the first map emits:
< Hello, 1>

< World, 1>

< Bye, 1>

< World, 1>

The second map emits:

< Hello, 1>

< Hadoop, 1>

< Goodbye, 1>

< Hadoop, 1>

Walk-Through
WordCount also specifies a combiner (line 46). Hence, the output of each map is passed through the local combiner (which
is same as the Reducer as per the job configuration) for local aggregation, after being sorted on the keys.

The output of the first map:

< Bye, 1>

< Hello, 1>

< World, 2>

The output of the second map:

< Goodbye, 1>

< Hadoop, 2>

< Hello, 1>

Walk-Through
The Reducer implementation (lines 28-36), via the reduce method (lines 29-35) just sums up the
values, which are the occurence counts for each key (i.e. words in this example).

Thus the output of the job is:

< Bye, 1>

< Goodbye, 1>

< Hadoop, 2>

< Hello, 2>

< World, 2>

The run method specifies various facets of the job, such as the input/output paths (passed via the
command line), key/value types, input/output formats etc., in theJobConf. It then calls the JobClient.
runJob (line 55) to submit the and monitor its progress.

Electrical Consumption
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

If the above data is given as input, we have to write applications to process it and produce results

such as finding the year of maximum usage, year of minimum usage, and so on. This is a walkover for

the programmers with finite number of records. They will simply write the logic to produce the required

output, and pass the data to the application written.

But, think of the data representing the electrical consumption of all the largescale industries of a

particular state, since its formation.

When we write applications to process such bulk data,

● They will take a lot of time to execute.

● There will be a heavy network traffic when we move data from source to network server and so

on.

To solve these problems, we have the MapReduce framework.

Thank you for pay attention!!!

