
Projected by:
LUKA CECXLADZE

BEQA CHELIDZE

Superviser : Nodar Momtsemlidze



About HBase™

 HBase is a column-oriented database management system that runs on top of HDFS. It 

is well suited for sparse data sets, which are common in many big data use cases. 

Unlike relational database systems, HBase does not support a structured query 

language like SQL; in fact, HBase isn’t a relational data store at all. HBase applications 

are written in Java much like a typical MapReduce application. 

 An HBase system comprises a set of tables. Each table contains rows and columns, 

much like a traditional database. Each table must have an element defined as a 

Primary Key, and all access attempts to HBase tables must use this Primary Key. An 

HBase column represents an attribute of an object; for example, In fact, HBase allows 

for many attributes to be grouped together into what are known as column families, 

such that the elements of a column family are all stored together. This is different from 

a row-oriented relational database, where all the columns of a given row are stored 

together. 

 Just as HDFS has a NameNode and slave nodes, and MapReduce has JobTracker 

and TaskTracker slaves, HBase is built on similar concepts. In HBase a master node 

manages the cluster and region servers store portions of the tables and perform the 

work on the data. In the same way HDFS has some enterprise concerns due to the 

availability of the NameNode .

http://www.ibm.com/software/data/infosphere/hadoop/hdfs/
http://www.ibm.com/software/data/infosphere/hadoop/mapreduce/


About MapReduce

 MapReduce is the heart of Hadoop®. It is this programming 
paradigm that allows for massive scalability across hundreds or 
thousands of servers in a Hadoop cluster. The MapReduce concept 
is fairly simple to understand for those who are familiar with 
clustered scale-out data processing solutions.

 For people new to this topic, it can be somewhat difficult to grasp, 
because it’s not typically something people have been exposed to 
previously. If you’re new to Hadoop’s MapReduce jobs, don’t worry: 
we’re going to describe it in a way that gets you up to speed 
quickly.

 The term MapReduce actually refers to two separate and distinct 
tasks that Hadoop programs perform. The first is the map job, 
which takes a set of data and converts it into another set of data, 
where individual elements are broken down into tuples (key/value 
pairs). The reduce job takes the output from a map as input and 
combines those data tuples into a smaller set of tuples. As the 
sequence of the name MapReduce implies, the reduce job is 
always performed after the map job.

http://www-01.ibm.com/software/data/infosphere/hadoop/
http://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/


About HDFS

 To understand how it’s possible to scale a Hadoop® cluster 

to hundreds (and even thousands) of nodes, you have to 

start with the Hadoop Distributed File System (HDFS). Data 

in a Hadoop cluster is broken down into smaller pieces 

(called blocks) and distributed throughout the cluster. In this 

way, the map and reduce functions can be executed on 

smaller subsets of your larger data sets, and this provides 

the scalability that is needed for big data processing.

http://www-01.ibm.com/software/data/infosphere/hadoop/


HBASE VS RDBMS

 RDBMS is relational database management system. Hadoop is 
node based flat structure.

 RDMS is generally used for OLTP processing whereas Hadoop 
is currently used for analytical and especially for BIG DATA 
processing.

 Any maintenance on storage, or data files, a downtime is 
needed for any available RDBMS. In standalone database 
systems, to add processing power such as more CPU, physical 
memory in non-virtualized environment, a downtime is needed 
for RDBMS such as DB2, Oracle, and SQL Server. However, 
Hadoop systems are individual independent nodes that can be 
added in an as needed basis.

 The database cluster uses the same data files stored in shared 
storage in RDBMS systems, whereas the storage data can be 
stored independently in each processing node.

 The performance tuning of an RDBMS can go nightmare. Even 
in proven environment. However, Hadoop enables hot tuning by 
adding extra nodes which will be self-managed.



HBASE VS RDBMS

 Hbase is a column oriented database whereas RDBMS is row 

oriented database, the main difference between these two is 

Hbase can easily scaled up with respect to storage and 

processing but whereas RDBMS has scalability but limited in 

storage capacity. when we are working with billions of rows and 

millions of columns then we need to choose Hbase as our 

database.

 RDBMS provides e.g. typed columns, secondary indexes, 

transactions, advanced query languages, etc.. but HBase 

doesn’t.

 HBase: on the other hand, is built on top of HDFS and provides 

fast record look-ups and updates for large tables.





About ZOOKEPEER

 ZooKeeper aims at distilling the essence of these different 

services into a very simple interface to a centralized 

coordination service. The service itself is distributed and 

highly reliable. Consensus, group management, and 

presence protocols will be implemented by the service so 

that the applications do not need to implement them on their 

own. Application specific uses of these will consist of a 

mixture of specific components of Zoo Keeper and 

application specific conventions.



HBase shell commands

 HBase shell commands are mainly 

categorized into 6 parts

1) General HBase shell commands

2) Tables Management commands

3) Data Manipulation commands

4) HBase surgery tools

5) Cluster replication tools

6) Security tools



General HBase shell commands

 hbase> status

hbase> status „simple‟

hbase> status „summary‟

hbase> status „detailed‟

 hbase> whoami

hbase> version



Tables Management commands

 hbase> create „t1′, {NAME => „f1′, VERSIONS => 5}

 hbase> describe „t1′

 hbase> disable_all „t.*‟

 hbase> drop_all „t.*‟

 hbase> enable_all „t.*‟

 hbase> list „abc.*‟

 hbase> show_filters

 hbase> alter_async „t1′, NAME => „f1′, METHOD => 

„delete' or a shorter version:hbase> alter_async „t1′, 

„delete‟ => „f1′



Data Manipulation commands

 hbase> count „t1′, INTERVAL => 100000

hbase> count „t1′, CACHE => 1000

hbase> count „t1′, INTERVAL => 10, CACHE => 

1000

 hbase> delete „t1′, „r1′, „c1′, ts1

 hbase> incr „t1′, „r1′, „c1′

 hbase> put „t1′, „r1′, „c1′, „value‟, ts1

 hbase>truncate „t1′



HBase surgery tools

 hbase> assign „REGION_NAME‟

 hbase> balancer

 hbase> balance_switch true

 hbase> close_region „REGIONNAME‟, 

„SERVER_NAME‟

 hbase> flush „REGIONNAME‟

 hbase> move „ENCODED_REGIONNAME‟, 

„SERVER_NAME‟

 hbase> unassign „REGIONNAME‟, true



Cluster replication tools

 hbase> add_peer „2‟, “zk1,zk2,zk3:2182:/hbase-

prod”

 hbase> remove_peer „1‟

 hbase> list_peers

 hbase> enable_peer „1‟

 hbase> start_replication

 hbase> stop_replication



Security tools

 hbase> grant „bobsmith‟, „RW‟, „t1′, „f1′, „col1′

 hbase> revoke „bobsmith‟, „t1′, „f1′, „col1′

 hbase> user_permission „table1′



PRESENTED BY :

BEQA CHELIDZE

LUKA CECXALDZE


